HL Paper 1

At 700 °C, the equilibrium constant, K_c , for the reaction is 1.075 × 10⁸.

$$2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$$

Which relationship is always correct for the equilibrium at this temperature?

A.
$$[H_2S]^2 < [H_2]^2 [S_2]$$

B.
$$[S_2] = 2[H_2S]$$

C.
$$[H_2S] < [S_2]$$

D.
$$[H_2S]^2 > [H_2]^2[S_2]$$

1.0 mol of $N_2(g)$, 1.0 mol of $H_2(g)$ and 1.0 mol of $NH_3(g)$ are placed in a 1.0 dm³ sealed flask and left to reach equilibrium. At equilibrium the concentration of $N_2(g)$ is 0.8 mol dm⁻³.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

What are the equilibrium concentration of $H_2(g)$ and $NH_3(g)$ in mol dm⁻³?

	[H ₂ (g)] / mol dm ⁻³	[NH ₃ (g)] / moldm ⁻³
A.	0.2	1.2
В.	0.4	1.4
C.	0.4	0.4
D.	0.8	1.2

The equation for the reaction between two gases, A and B, is:

$$2A(g) + 3B(g) \rightleftharpoons C(g) + 3D(g)$$

When the reaction is at equilibrium at 600 K the concentrations of A, B, C and D are 2, 1, 3 and 2 $\mathrm{mol}\,\mathrm{dm}^{-3}$ respectively. What is the value of the equilibrium constant at 600 K?

- A. $\frac{1}{4}$
- B. $\frac{9}{7}$
- C. 3
- D. 6

Components X and Y are mixed together and allowed to reach equilibrium. The concentrations of X, Y, W and Z in the equilibrium mixture are 4, 1, 4 and $2 \mod \dim^{-3}$ respectively.

$$X + 2Y \rightleftharpoons 2W + Z$$

What is the value of the equilibrium constant, K_c ?

- Α. -
- B. $\frac{1}{2}$
- C. 2
- D. 8

A mixture of 2.0 mol of H_2 and 2.0 mol of I_2 is allowed to reach equilibrium in the gaseous state at a certain temperature in a $1.0~\mathrm{dm^3}$ flask. At equilibrium, 3.0 mol of HI are present. What is the value of K_c for this reaction?

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

- A. $K_{
 m c}=rac{(3.0)^2}{(0.5)^2}$
- B. $K_{
 m c}=rac{3.0}{\left(0.5
 ight)^2}$
- C. $K_{
 m c}=rac{(3.0)^2}{(2.0)^2}$
- D. $K_{
 m c}=rac{{{{(0.5)}^2}}}{{{{(3.0)}^2}}}$

What is the relationship between ${
m p}K_{
m a}$, ${
m p}K_{
m b}$ and ${
m p}K_{
m w}$ for a conjugate acid–base pair?

- A. $pK_a = pK_w + pK_b$
- B. $pK_a = pK_w pK_b$
- C. $\mathrm{p}K_{\mathrm{a}} imes \mathrm{p}K_{\mathrm{b}} = \mathrm{p}K_{\mathrm{w}}$
- D. $rac{\mathrm{p}K_{\mathrm{a}}}{\mathrm{p}K_{\mathrm{b}}}=\mathrm{p}K_{\mathrm{w}}$

The indicator, HIn is used in a titration between an acid and base. Which statement about the dissociation of the indicator, HIn is correct?

$$\operatorname{HIn}(\operatorname{aq}) \rightleftharpoons \operatorname{H}^+(\operatorname{aq}) + \operatorname{In}^-(\operatorname{aq})$$

colour A

colour B

- A. In a strongly alkaline solution, colour B would be observed.
- B. In a strongly acidic solution, colour B would be observed.
- C. $[In^-]$ is greater than [HIn] at the equivalence point.
- D. In a weakly acidic solution colour B would be observed.

When gaseous nitrosyl chloride, NOCl (g), decomposes, the following equilibrium is established:

$$2\text{NOCl}(g) \rightleftharpoons 2\text{NO}(g) + \text{Cl}_2(g)$$

2.0 mol of NOCl(g) were placed in a $1.0~{
m dm^3}$ container and allowed to reach equilibrium. At equilibrium 1.0 mol of NOCl(g) was present. What is the value of K_c ?

A. 0.50

B. 1.0

C. 1.5

D. 2.0

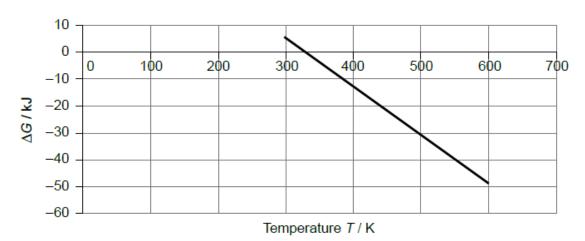
B.

C.

D.

A mixture of 0.40 mol of CO (g) and 0.40 mol of H_2 (g) was placed in a 1.00 dm³ vessel. The following equilibrium was established.

CO (g) + 2H₂ (g)
$$\rightleftharpoons$$
 CH₃OH (g)


At equilibrium, the mixture contained 0.25 mol of CO (g). How many moles of H₂ (g) and CH₃OH (g) were present at equilibrium?

	Equilibrium mol of H ₂	Equilibrium mol of CH ₃ OH
A.	0.25	0.15
B.	0.50	0.25
C.	0.30	0.25
D.	0.10	0.15

Which is correct for an isolated system in equilibrium?

Gibbs free energy	Entropy
maximum	maximum
maximum	minimum
minimum	maximum
minimum	minimum

The graph shows values of ΔG for a reaction at different temperatures.

Which statement is correct?

- A. The standard entropy change of the reaction is negative.
- B. The standard enthalpy change of the reaction is positive.
- C. At higher temperatures, the reaction becomes less spontaneous.
- D. The standard enthalpy change of the reaction is negative.